

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 6665–6668

Selective functionalization of b-cyclodextrin: efficient conversions of 2,3-alloepoxypyranosides to 2,3-mannoepithiopyranosides

Makoto Fukudome, Toshiyuki Onizuka, Satoshi Kawamura, De-Qi Yuan* and Kahee Fujita*

Department of Molecular Medicinal Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan

> Received 13 June 2007; revised 17 July 2007; accepted 19 July 2007 Available online 27 July 2007

Abstract—A two-step one-pot method was established to efficiently convert up to three 2,3-*alloepoxypyranoside residues to the* 2,3 $man no$ epithiopyranosides within the β -cyclodextrin belts. © 2007 Elsevier Ltd. All rights reserved.

Many artificial enzymes have been made by the functionalizations of cyclodextrins (CDs) whose cavities afford substrate-binding sites.^{[1](#page-3-0)} Mono- to poly-functionalizations including homo and hetero ones on the pri-mary hydroxyl sides have been extensively studied.^{[1,2](#page-3-0)} With respect to the secondary hydroxyl sides, there have been not so many reports on mono-functionalizations, $1-3$ even less on homo-bifunctionalizations, $1-3$ and none on hetero-bifunctionalizations except our recent studies.^{[4,5](#page-3-0)} The main problem seems to be the limited availability of versatile intermediates including 2,3 epoxy- CDs^{1-3} for incorporating functionalities. The development of the thia- and aza-analogues of the 2,3 epoxy-CDs is expected to open a new way to the hereo-bifunctionalizations of CDs. Recently, we have reported the preparation of 2,3-alloepithio- β -CD^{[4](#page-3-0)} 2 from 2,3-*mannoepoxy*- β -CD^{[4](#page-3-0)} 1 ([Scheme 1](#page-1-0)), and demonstrated an example of using 2 as a potential versatile scaffold to prepare β -CDs heterogeneously bi-functionalized at the secondary hydroxyl sides. However, this method suffers from the formation of a considerable amount of the olefin 3 and it is not applicable in the preparation of CD derivatives with two or more epithio units. On the other hand, $2,3$ -mannoepoxy- β -CD 1 has been demonstrated to react with a nucleophile to give a pair of functional CDs that are structurally complementary to that the 2,3-alloepoxy- β -CD 4 can afford.^{3a,6}

Therefore the *manno* analogues of *alloepithio-* β *-CD* 2 should be of equal significance. In this Letter, we describe a two-step one-pot method for the 2,3-mannoepisulfidation which allows the efficient construction of up to three 2,3-mannoepithio units within the CD belt.

The synthetic strategy for the $2,3$ -mannoepithio- β -CDs 5, 9, 10 and 11 is depicted in [Scheme 2](#page-1-0). The 2,3-alloepoxy-b-CDs were reacted with thiourea in acidic aqueous solutions and then treated with alkali solutions to afford the $2,3$ -mannoepithio- β -CDs in moderate to good yields.

A solution of 0.2 M HCl (5 ml, 1 mmol) containing 2^A , 3^A -alloepoxy- β -CD $4⁷$ $4⁷$ $4⁷$ (500 mg, 0.45 mmol) and thiourea (4.7 g, 22.4 mmol) was stirred at 70 °C for 1.5 h and then cooled down with a cold water bath. After sodium carbonate (77 mg, 0.73 mmol) was added, the solution was stirred at room temperature for 5 min. The solution was neutralized with 1 M HCl and then poured into acetone (500 ml). The precipitates were collected by membrane-filtration and dissolved in water (100 ml). Chromatography of the solution on a Lobar column (Rp-18, size C) with a gradient elution from 3% aq EtOH to 7% aq EtOH (11 for each) gave 5 (324 mg, 64.0%).

The 2D COSY NMR spectra of 5 in D_2O enabled the assignment of most of the protons and carbons of sugar unit A [\(Fig. 1](#page-1-0)): δ_H 5.32 (s, H-1^A), 3.36 (d, $J_{2,3} = 6.3$ Hz, H-2^A), 3.42 (H-3^A), and 4.15 (d, $J_{4,5} = 9.3$ Hz, H-4^A); δ_C 100.3 (C-1^A), 34.3 (C-2^A), 36.4 (C-3^A), 73.3 (C-4^A), 71.3

Keywords: Cyclodextrins; Epoxide; Episulfide; Modification.

^{*} Corresponding authors. E-mail addresses: [deqiyuan@nagasaki-u.ac.](mailto:deqiyuan@nagasaki-u.ac. jp) [jp](mailto:deqiyuan@nagasaki-u.ac. jp); fujita@nagasaki-u.ac.jp

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.07.113

Scheme 1. Conversion of 2,3-mannoepoxy- β -CD to 2,3-alloepithio- β -CD with thiourea in DMF is accompanied by the formation of the olefin species.

Scheme 2. The two-step one-pot reactions of 2,3-alloepoxy-β-CDs with thiourea ensure the selective syntheses of 2,3-mannoepithio-β-CDs.

Figure 1. ¹H and ¹³C NMR spectra of 5 in D_2O .

 $(C-5^A)$, and 62.2 $(C-6^A)$. The remarkable upfield shifts of both C-2^A and C-3^A ($\Delta \delta = 22.9$ and 18.6, respectively, compared with those of 2^A , 3^A -alloepoxy- β -CD 4^7 4^7) reasonably suggest the replacement of the oxygen atom of the epoxide by a sulfur-substituent. TOF-MS spectrum of 5 showed a pair of pseudo parent peaks, $[M+Na⁺]$ at m/z 1155 and $[M+K^{\dagger}]$ at m/z 1171, which are consistent with the molecular ion of the epithio species 5 and strongly support the above structural assignment. The negligibly small constant $J_{1,2}$ of the epithio sugar residue implies that the epithio group is of manno-type rather than *allo*-type because the $J_{1,2}$ was reported to be 4.4 Hz or 0 Hz for methyl 2,3-dideoxy-2,3-epithio-4,6 di-O-methyl-a-D-alloside or its mannoside analog, respectively,^{[8](#page-3-0)} and the large coupling constant $J_{1,2}$ (5.9 Hz) was found in the case of 2^{A} , 3^{A} -alloepithio- 2^{A} , 3^A-dideoxy- β -CD.⁴ Thus, compound 5 is assigned to 2^{A} , 3^{A} -dideoxy- 2^{A} , 3^{A} -mannoepithio- β -CD.

Reactions of the dialloepoxy- β -CDs 6, $7⁷$ $7⁷$ and the trialloepoxy- β -CD $\mathbf{8}^9$ $\mathbf{8}^9$ with thiourea under similar conditions afforded the corresponding dimannoepithio-b-CDs 9 and 10 and trimannoepithio- β -CD 11, respectively (Table 1). The 1 H and 13 C NMR relating the *mannoepithiopyran*oside residues are listed in Table 2.

A plausible mechanism for the formation of 2,3-epithio- β -CD 5 from 2,3-epoxy- β -CD 4 is depicted in [Scheme 3.](#page-3-0) Based on the known reaction behaviours of alloepoxide rings in $CDs₃^{3a}$ it can be reasonably figured out that the ring opening of the epoxide 4 by the nucleophilic attack of thiourea generates two kinds of thioureidopyranosides 12a and 12b. [10](#page-3-0) Under alkaline conditions, the transfer of $(NH₂)₂C⁺$ from 3-S to 2-O or from 2-S to 3-O and the subsequent intramolecular substitution of $2-OC^+(NH_2)_2$ by 3-S⁻ or 3-OC⁺(NH₂)₂ by 2-S⁻ take place to generate the same episulfide 5. The formation of thioureidopyranosides was confirmed by monitoring the reaction progress with TLC (Silica gel, *n*-PrOH/AcOEt/H₂O = $7/3/6$ by volume) which displayed the appearance of a new spot with an R_f (ca. 0) much lower than those of both 4 (R_f = 0.4) and the final product 5 (R_f = 0.56). As soon as the reaction solution was made alkaline at rt, the spot of final products appeared at $R_f = 0.56$ and the thickness increased till the spot at $R_f = 0$ disappeared completely.

The intermediates 12a and 12b are stable under acidic conditions and can be isolated. Both 12a (altroside type) and 12b (glucoside type) gave the same parent peak at m/z 1193. A purified sample of 12a demonstrated the thioureido carbon at δ_c 171.5 ppm which correlated

Table 1. Reaction conditions and results of conversion of epoxides to episulfides

Epoxide	HCl	Thiourea (g)	Reaction time ^a (min)	$Na2CO3$ (mg)	Episulfide
4 (500 mg)	0.2 M, 5 ml		90		5 (324 mg, 64.0%)
6 (300 mg)	0.4 M. 3 ml		30	92	9 (162 mg, 52.4%)
$7(300 \,\mathrm{mg})$	0.4 M. 3 ml	. .0	30	92	10 (185 mg, 59.9%)
$8(300 \text{ mg})$	0.6 M. 3 ml		20	138	11 (98 mg, 31.3%)

^a The time required for the completion of the first step.

Table 2. The chemical shifts relating the 2,3-mannoepithiopyranoside units of 5, 9, 10 and 11 in D₂O^a

				¹ H, δ /ppm (coupling pattern, coupling constant $\delta J/Hz$, number of protons)						
Nuclei	$\mathbf{1}$	\overline{c}		$\overline{3}$	$\overline{4}$					
Compound 5	5.32 (s, 1H)	3.36 (d, 6.3, 1H)		3.42~(1H)		4.15 (d, 9.3, 1H)				
Compound 9	5.32 (s, 1H) 5.34 $(s, 1H)$	$3.36 - 3.39$ (m, 3H)		$3.40 - 3.42$ (m, 2H)		4.03 (d, 9.4, 1H) 4.06 (d, 8.9, 1H)				
Compound 10	5.34 $(s, 1H)$ 5.37 (s, 1H)	3.37 (d, 6.4, 2H)		3.41 (m, 2H)	4.03 (d, 8.9, 1H) 4.04 (d, 9.5, 1H)					
Compound 11	5.34 $(s, 1H)$ 5.34 $(s, 1H)$ 5.37 (s, 1H)	$3.36 - 3.39$ (m, 3H)		$3.40 - 3.42$ (m, 3H)	$4.05 - 4.07$ (m, 3H)					
${}^{13}C$, δ /ppm										
Nuclei	1	$\mathbf{2}$	3	$\overline{4}$	5	6				
Compound 5	100.3	34.3	36.4	73.3	71.3	62.2				
Compound 9	99.6 100.2	34.2 34.3	36.1 36.4	72.5 72.6	71.3 71.4	62.2 62.3				
Compound 10	99.7 100.1	34.2 34.2	36.1 36.2	72.8 72.9	71.5 71.5	62.3 62.4				
Compound 11	99.5 99.6 99.7	34.2 34.2 34.3	35.9 36.1 36.2	72.4 72.4 72.5	71.3 71.5 71.5	62.2 62.3 62.4				

^a The marks s, d, and m denote singlet, doublet, and multiplet, respectively.

Scheme 3. A plausible mechanism for the formation of 2,3-mannoepisulfide 5 from 2,3-alloepoxide 4.

with the $H2^A$ in the HMBC spectrum. This observation together with the high field chemical shift of $C2^{\text{A}}$ (δ_C 51.3 ppm) indicated that a thioureido group was attached to the C2^A of 12a. The $[$ ¹H,¹H] coupling constants, $J_{1,2}$ (7.8 Hz) and $J_{2,3}$ (11.1 Hz) of the substituted sugar unit A of 12a are rather large, implying that the $H1^A$, $H2^A$ and $H3^A$ are axially disposed. This stereochemistry suggests that the structure of unit A is of altroside-type. On the other hand, the $C3^A$ of 12a resonated at very high field (δ _C 53.7 ppm) and the substituted sugar unit A of 12b showed that the $J_{1,2}$, (3.4 Hz) was rather small, consistent with the 3^{A} -thioureidoglucopyranoside structure.

Epithio compounds are subject to S_N2 reactions to give 2-substituted thiols or the related compounds as the ring-opening products.¹¹ Therefore, the preparation of compounds 5 and 9–11 with 1–3 mannoepithiopyranoside residues must be of significance for the preparation of $2,3$ -homo- or hetero-polyfunctional β -CDs. Researches on the reactions of these epithio- β -CDs are in progress and the results will be reported in due course.

Acknowledgement

The authors are grateful to the Japan Maize Products Co. Ltd. for generous gift of cyclodextrins.

References and notes

1. Comprehensive Supramolecular Chemistry; Atwood, J. L., Davis, J. E., MacNicol, D. D., Vogtle, F., Eds.; Cyclodextrins; Pergamon Elsevier: Oxford, UK, 1996; Vol. 3; Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997– 2011.

- 2. Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Chem. Rev. 1998, 98, 1977–1996.
- 3. (a) Yuan, D.-Q.; Tahara, T.; Chen, W.-H.; Okabe, Y.; Yang, C.; Yagi, Y.; Nogami, Y.; Fukudome, M.; Fujita, K. J. Org. Chem. 2003, 68, 9456–9466; (b) Yu, H.; Teramoto, A.; Fukudome, M.; Xie, R.-G.; Yuan, D.-Q.; Fujita, K. Tetrahedron Lett. 2006, 47, 8837–8840.
- 4. Fukudome, M.; Okabe, Y.; Sakaguchi, M.; Morikawa, H.; Fujioka, T.; Yuan, D.-Q.; Fujita, K. Tetrahedron Lett. 2004, 45, 9045–9048.
- 5. Fukudome, M.; Yuan, D.-Q.; Fujita, K. Tetrahedron Lett. 2005, 46, 1115–1118.
- 6. Yuan, D.-Q.; Ohta, K.; Fujita, K. Chem. Commun. 1996, 821–822.
- 7. Fujita, K.; Tahara, T.; Imoto, T.; Koga, T. J. Am. Chem. Soc. 1986, 108, 2030-2034.
- 8. Jesudason, M. V.; Owen, L. N. J. Chem. Soc., Perkin Trans. 1 1974, 2019–2024.
- 9. Fujita, K.; Tahara, T.; Yamamura, H.; Imoto, T.; Koga, T.; Fujioka, T.; Mihashi, K. J. Org. Chem. 1990, 55, 877– 880.
- 10. Fukudome, M.; Shiratani, T.; Immel, S.; Nogami, Y.; Yuan, D.-Q.; Fujita, K. Angew. Chem., Int. Ed. 2005, 44, 4201–4204.
- 11. (a) Vasil'eva, S. A.; Kalimullina, L. Kh.; Safarov, M. G. Chem. Heterocycl. Compd. 2003, 39, 174–177; (b) Ando, W.; Choi, N.; Tokitoh, N. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Elsevier: Oxford, 1996; pp 173–240, 1A; (c) Chew, W.; Harpp, D. N. Sulfur Rep. 1993, 15, 1–39; (d) Luhowy, R.; Meneghini, F. J. Org. Chem. 1973, 38, 2405–2407; (e) Johnson, D. L.; Reynolds, D. D. Mech. React. Sulfur Compd. 1970, 5, 103–130; (f) Tobler, E. Ind. Eng. Chem., Prod. Res. Develop. 1969, 8, 415–420; (g) Reynolds, D. D.; Fields, D. L. In Heterocyclic Compounds with Three- and Four-Membered Rings; Weissberger, A., Ed.; Interscience: New York, 1964; pp 576–623, Part 1.